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Abstract Let Kq(n, w, t, d) be the minimum size of a code over Zq of length n, constant
weight w, such that every word with weight t is within Hamming distance d of at least one
codeword. In this article, we determine Kq(n, 4, 3, 1) for all n ≥ 4, q = 3, 4 or q = 2m + 1
with m ≥ 2, leaving the only case (q, n) = (3, 5) in doubt. Our construction method is
mainly based on the auxiliary designs, H-frames, which play a crucial role in the recursive
constructions of group divisible 3-designs similar to that of candelabra systems in the con-
structions of 3-wise balanced designs. As an application of this approach, several new infinite
classes of nonuniform group divisible 3-designs with block size four are also constructed.
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Group divisible t-design · H-frame
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1 Introduction

Let Zn
q denote the set of all n-tuples over Zq . The elements of Zn

q are called words. For each
word u and i ∈ {1, 2, . . . , n}, ui denotes the i th component of u. The Hamming distance
between two words u, v is defined as �(u, v) = |{i : ui �= vi }|. The Hamming weight wt (u)

of u is defined as the distance from the origin, i.e., wt (u) = �(u, 0). An (n, w, t, d) constant
weight covering code over Zq is a subset of Zn

q with constant weight w, such that every word
with weight t is within Hamming distance d of at least one codeword. Denote the minimum
size of such a code by Kq(n, w, t, d) and a code achieving this size is called optimal.
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One of the main motivations for studying covering codes is their applications to universal
data compression algorithms, see e.g. [3,8]. Consider a universal quantizer, which consists
of a bank of optimal constant weight covering codes, one for each weight. An input vector
x is compressed by the universal quantizer to a pair (i, j), where i indicates the selected
code according to the weight of x and j indicates the codeword closest to x in the selected
code. Apart from these applications, the determination of Kq(n, w, t, d) is a fundamen-
tal combinatorial problem which was studied by many researchers in the last sixty years.
In combinatorics, there are several kinds of equivalent combinatorial objects [4], such as
Turán designs, lottery schemes and covering designs. For w − t ≥ 0, an (n, w, t, w − t)
constant weight covering code over Zq is equivalent to a kind of group divisible covering
design. A great number of papers have been published on the lower and upper bounds of
Kq(n, w, t, d) for q = 2, see [2,5]. However only specific values of them are determined,
such as K2(n, 2, t, t −2) [25], K2(n, 3, 2, 1) [6], K2(n, 4, 3, 1) [12], K2(n, w, 2, w−2) [14].
For q ≥ 3, some results can be found in [13].

Group divisible t-designs have been studied for many years by numerous researchers for a
variety of reasons, see e.g. [4]. Important applications of these designs include the construc-
tion of other types of combinatorial structures, e.g. pairwise balanced designs and frames.
Recently, Keranen and Kreher [18] started the investigation on the existence of nonuniform
group divisible 3-designs. However, the existence problem is rather difficult and the known
results are far from complete despite the effort of several authors (see [18,27]).

In this article, we pay particular attention to the determination of Kq(n, 4,3, 1) for q = 3, 4
or q = 2m + 1 with m ≥ 2. The problem will be solved almost completely with the only
case (q, n) = (3, 5) undetermined. This result is obtained by solving an equivalent problem,
that is, the existence of group divisible coverings of triples by quadruples using combina-
torial tools. Besides these, we also focus on the existence problems for nonuniform group
divisible 3-designs with block size four. Several new infinite classes of such designs will be
constructed.

Our construction method for the above two problems is mainly based on the auxiliary
designs, H-frames, which play a crucial role in the recursive constructions of group divisi-
ble 3-designs similar to that of candelabra systems in the constructions of 3-wise balanced
designs. We believe that the theory of candelabra systems and H-frames will be proved useful
for solving the general existence problems on both group divisible coverings of triples by
quadruples and nonuniform group divisible 3-designs with block size four.

2 Preliminary

Let v and t be positive integers and K be a set of positive integers. A group divisible t-covering
(or t-GDC) of order v with block sizes from K , denoted by GDC(t, K , v), is a triple (X, G, B)

such that

(1) X is a set of v elements (called points);
(2) G = {G1, G2, . . . } is a set of nonempty subsets (called groups) of X which partition X ;
(3) B is a family of transverses (called blocks) of G, each of cardinality from K , where a

transverse is a subset of X that intersects any given group in at most one point;
(4) every t-element transverse of G is contained in at least one block.

The excess of a t-GDC is the multi-set of t-element transverses T of G with multiplicity
|{B ∈ B : T ⊂ B}| − 1. The type of the GDC(t, K , v) is defined as the list (|G||G ∈ G).
If a GDC has ni groups of size gi , 1 ≤ i ≤ r , then we use an “exponential” notation
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Constant weight covering codes and group divisible 3-designs 145

gn1
1 gn2

2 · · · gnr
r to denote the group type. A t-GDC is called uniform if all of its groups have

the same size. When K = {k}, we simply write k for K .
A t-GDC is known as group divisible t-design (or t-GDD), denoted by GDD(t, k, v),

if every t-element transverse T of G is contained in exactly one block. Mills [22] used
H(n, g, 4, 3) design to denote the GDD(3, 4, ng) of type gn . A GDD(t, K , n) of type 1n is
also referred to as a t-wise balanced design of order n with block sizes from K , denoted by
S(t, K , n). When t = 3 and K = {4}, it is well known as Steiner quadruple systems and
denoted by SQS(n). Hanani [9] has shown that an SQS(n) exists for all n ≡ 2, 4 (mod 6).

Theorem 2.1 ([16,22]) For n > 3 and n �= 5, a GDD(3, 4, gn) of type gn exists if and only
if ng is even and g(n − 1)(n − 2) is divisible by 3. For n = 5, a GDD(3, 4, 5g) of type g5

exists when g is even, g �= 2 and g �≡ 10, 26 (mod 48).

Let C(n, g, k, t) denote the minimum number of blocks in any GDC(t, k, ng) of type gn .

A GDC(t, k, ng) of type gn , (X, G, B), is optimal (OGDC) if |B| = C(n, g, k, t).
Clearly, if a GDD(t, k, ng) of type gn exists, then it is optimal. Let L(n, g, k, t) =
� gn

k � g(n−1)
k−1 · · · � g(n−t+1)

k−t+1 	 · · · 		. Schönheim [23] showed that C(n, g, k, t) ≥ L(n, g, k, t)
for all n ≥ k ≥ t ≥ 1.

For t = 3, k = 4 and g = 1, Mills [20] has shown that C(n, 1, 4, 3)= L(n, 1, 4, 3)

for all n �≡ 7(mod 12). Kalbfleisch and Stanton [17] and Swift [24] have shown that
C(7, 1, 4, 3)= L(7, 1, 4, 3)+ 1 = 12. Mills [21] also proved that C(499, 1, 4, 3)= L(499, 1,

4, 3). Hartman et al. [12] have shown that C(n, 1, 4, 3)= L(n, 1, 4, 3) for all n ≥ 52423.
It was recently improved by Ji [15] that C(n, 1, 4, 3)= L(n, 1, 4, 3) for all n with an
exception n = 7 and possible exceptions of n = 12k + 7, k ∈ {1, 2, 3, 4, 5, 7, 8, 9, 10,

11, 12, 16, 21, 23, 25, 29}.
Lemma 2.1 The existence of an OGDC(t, k, ng) of type gn is equivalent to that of an
optimal (n, k, t, k − t) constant weight covering code over Zg+1, i.e., C(n, g, k, t) =
Kg+1(n, k, t, k − t).

Proof Suppose we have an OGDC(t, k, ng) of type gn , (In × Ig, {{i} × Ig : i ∈ In}, B),
where Is = {1, 2, . . . , s}. For each block {(a1, b1), (a2, b2), . . . , (ak, bk)} ∈ B, we obtain a
codeword of length n by putting b j in the position of a j , 1 ≤ j ≤ k, and zeros elsewhere. It
is easy to see that all the resultant codewords form an optimal (n, k, t, k − t) constant weight
covering code over Zg+1.

Conversely, suppose we have an optimal (n, k, t, k − t) constant weight covering
code C over Zg+1. For each codeword u ∈ C, if the nonzero positions of u are a1,

a2, . . . , ak , and the corresponding components of u are b1, b2, . . . , bk , then we form a block
{(a1, b1), (a2, b2), . . . , (ak, bk)}. It is easy to check that all the resultant blocks form an
OGDC(t, k, ng) on In × Ig with group set {{i} × Ig : i ∈ In}. 
�

Now, we give the concept of an H-frame, which is a generalization of that in [12]. An
H(t, K , v) frame is an ordered four-tuple (X, G, B, F) with the following properties:

1. X is a set of v points;
2. G = {G1, G2, . . .} is a partition of X into groups;
3. F is a family {Fi } of subsets of G called holes, which is closed under intersections. Hence

each hole Fi ∈ F is of the form Fi = {Gi1 , Gi2 , . . . , Gis }, and if Fi and Fj are holes
then Fi ∩ Fj is also a hole. The number of groups in a hole is its size; and

4. B is a set of transverses (called blocks) of G, each of cardinality from K , such that every
t-element transverse of G which is not a t-element transverse of any hole Fi ∈ F is
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contained in precisely one block, and no block contains a t-element transverse of any
hole.

If all the groups in G have the same size g, then (X, G, B, F) is an H(v/g, g, K , t) frame as
defined in [12], which is shortly denoted by HF(v/g, g, K , t). If an HF(q, g, K , 3) has ni

holes of size mi + s intersecting on a common hole of size s, i = 1, 2, . . . , r , then we denote
such a design as K -HFg(m

n1
1 mn2

2 · · · mnr
r : s). When g = 1, a K -HF1(m

n1
1 mn2

2 · · · mnr
r : s) is

known as a candelabra system, denoted by K -CS(mn1
1 mn2

2 · · · mnr
r : s) (X, S, �, B), where S

is the common hole called stem, � = {F \ S : F ∈ F} is the set of groups. When K = {4}, it
is called a candelabra quadruple system (CQS). If an HF(q, g, K , 3) has only one hole of size
s, then we call it an incomplete group divisible design, denoted by IGDD((q : s), g, K , 3).

If an H(3, K , v) frame, (X, G, B, F), has the properties that all the groups in G have the
same size g except for G1, which has size g − 1 and F has ni holes of size mi + s inter-
secting on a common hole of size s, i = 1, 2, . . . , r , while G1 belongs to the common hole,
then we call such an H(3, K , v) frame a modified H(3, K , v) frame, which is denoted by
K -MHFg(m

n1
1 mn2

2 · · · mnr
r : s).

Lemma 2.2 [20] There exists a CQS(6n : 0) for all n ≥ 0.

Lemma 2.3 For each integer n ≥ 3, there exists a {4, 6}-CS(2n : 2).

Proof For each n ≡ 0, 1 (mod 3), n ≥ 3, there exists a CQS(2n : 2) obtained from an
SQS(2n +2). For each n ≡ 2 ( mod 3), n ≥ 5, there exists a {4, 6}-CS(2n : 2) obtained from
a CQS(6(n+1)/3 : 0) by taking two points from two distinct groups as stem points. 
�
Lemma 2.4 Suppose that (X, S, �, A) is a K -CS(mn : s) and ∞ ∈ S. Let K1 = {|A| : ∞ ∈
A ∈ A} and K2 = {|A| : ∞ �∈ A ∈ A}. If there exist a 4-HFg(tk1−1 : a)(4-MHFg(tk1−1 : a))

for each k1 ∈ K1 and a GDD(3, 4, gtk2) of type (gt)k2 for each k2 ∈ K2, then there exists a
4-HFg((tm)n : t (s − 1) + a) (4-MHFg((tm)n : t (s − 1) + a) respectively).

Proof Suppose that the given K -CS(mn : s) has group set � = {G1, . . . , Gn}. We first
construct a 4-HFg((tm)n : t (s − 1) + a). Define G ′

x, j = x × { j} × Zg . Let X ′ = ((X \
{∞})× Zt × Zg)∪({∞}× Za × Zg), G′ = {G ′

x, j : x ∈ X \{∞}, j ∈ Zt }∪{G ′∞, j : j ∈ Za},
F = {Fi : 0 ≤ i ≤ n}, where F0 = {G ′

x, j : x ∈ S \ {∞}, j ∈ Zt } ∪ {G ′∞, j : j ∈ Za} being
the common hole of size t (s − 1)+ a and Fi = {G ′

x, j : x ∈ Gi , j ∈ Zt } ∪ F0 for 1 ≤ i ≤ n.

For each B ∈ A and ∞ ∈ B, construct a 4-HFg(t |B|−1 : a) on ((B \ {∞}) × Zt ×
Zg) ∪ ({∞} × Za × Zg) with group set {G ′

x, j : x ∈ B \ {∞}, j ∈ Zt } ∪ {G ′∞, j : j ∈ Za}
and holes Fx = {G ′

x, j : j ∈ Zt } ∪ F∞, x ∈ B \ {∞} intersecting on a common hole
F∞ = {G ′∞, j : j ∈ Za} of size a. Denote its block set by AB .

For each B ∈ A and ∞ �∈ B, construct a GDD(3, 4, gt |B|) of type (gt)|B| on B × Zt × Zg

with group set {x × Zt × Zg : x ∈ B}. Denote its block set by CB .
Let A′ = (∪B∈A,∞∈BAB) ∪ (∪B∈A,∞/∈BCB). It is easy to check that A′ is the block set

of a 4-HFg((tm)n : t (s − 1) + a) on X ′ with group set G′ and hole set F .
The proof for the construction of a 4-MHFg((tm)n : t (s − 1) + a) is similar as above.

Denote Z∗
a = Za\{0}. Let X ′′ = ((X\{∞})×Zt ×Zg) ∪ ({∞}×((Za×Zg)\{(0, 0)})), G′′ =

{G ′
x, j : x ∈ X \ {∞}, j ∈ Zt } ∪ {G ′∞, j : j ∈ Z∗

a} ∪ {G ′∞,0 \ {(∞, 0, 0)}}, F ′ = {F ′
i : 0 ≤

i ≤ n}, where F ′
0 = {G ′

x, j : x ∈ S \{∞}, j ∈ Zt }∪{G ′∞, j : j ∈ Z∗
a}∪{G ′∞,0 \{(∞, 0, 0)}}

being the common hole of size t (s − 1) + a and F ′
i = {G ′

x, j : x ∈ Gi , j ∈ Zt } ∪ F ′
0 for

1 ≤ i ≤ n. It is easy to get a 4-MHFg((tm)n : t (s − 1) + a) on X ′′ with group set G′′ and
hole set F ′ by taking the above similar steps as those for a 4-HFg((tm)n : t (s − 1) + a). 
�
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Constant weight covering codes and group divisible 3-designs 147

3 Optimal ternary constant weight covering codes

In this section, we determine K3(n, 4, 3, 1), i.e., C(n, 2, 4, 3). From Theorem 2.1, there exists
a GDD(3, 4, 2n) of type 2n if n ≡ 1, 2 (mod 3) and n �= 5, which means C(n, 2, 4, 3) =
L(n, 2, 4, 3) for all such n. For n = 5, we give a lower and an upper bound for C(5, 2, 4, 3).

Lemma 3.1 L(5, 2, 4, 3) + 2 ≤ C(5, 2, 4, 3) ≤ 24.

Proof It is easy to construct a GDC(3, 4, 10) of type 25 with 24 blocks. Let X = Z8 and
G = {{i, i + 4} : i = 0, 1, 2, 3}}. There exist a GDD(3, 4, 8) and a GDD(2, 3, 8) of type 24

on X with group set G. Denote the block sets by B and T respectively, both of which have
cardinality 8. Let X ′ = X ∪ {∞1,∞2} and G′ = G ∪ {{∞1,∞2}}. For each i = 1, 2, let
Ci = {T ∪ {∞i } : T ∈ T }. Then it is easy to show that B ∪ C1 ∪ C2 is a GDC(3, 4, 10) of
type 25 on X ′ with group set G′ having 24 blocks. Hence, C(5, 2, 4, 3) ≤ 24.

For the lower bound, we only need to prove the nonexistence of a GDC(3, 4, 10) of type 25

with 21 blocks. Assume (X ′, G′, A) is a GDC(3, 4, 10) of type 25 with |A| = 21 and excess
E . Then |E | = 4 and E contains 12 elements with at least three of them being distinct.
Suppose E contains five or more distinct points. Then, E contains at least 15 elements noting
the fact that: for each point appears in the excess, the number of triples in the excess contain-
ing this point is divisible by 3. Suppose E contains exactly three distinct points, say a, b, c.
Then, the repetition numbers for them to appear in E could only be 3, 3, 6. There is no way
to form four triples on {a, b, c}. Thus E must contain four distinct points, say a, b, c, d , each
of which is contained in three triples of E . So E should be composed of {a, b, c}, {a, b, d},
{a, c, d}, {b, c, d}. Furthermore, {a, b, c, d} /∈ A. Otherwise, we can delete {a, b, c, d} from
the block set to get a GDD(3, 4, 10) of type 25. This contradicts to the nonexistence of
such a design. Hence, we conclude that {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} are contained
in exactly eight blocks of A. Since any two triples in {{a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}}
intersect in two common points and {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d} are the only four
triples in the excess, the fourth points in the eight blocks of A should be pairwise distinct.
Otherwise, it will produce more triples in the excess. Consequently, we will have at least 12
distinct points in X ′. This contradicts to the fact |X ′| = 10. 
�

When n ≡ 0 (mod 3), L(n, 2, 4, 3) = n(n2 − 3n + 3)/3. We say a GDD(3, {4, 6}, 2n)

of type 2n is good if it contains exactly n/3 blocks of size 6.

Lemma 3.2 If there exists a good GDD(3, {4, 6}, 2n) of type 2n, then C(n, 2, 4, 3) =
L(n, 2, 4, 3).

Proof The number of blocks of size 4 for a good GDD(3, {4, 6}, 2n) of type 2n is n(n2 −
3n − 3)/3. For each block of size 6, replace it with an OGDC(3, 4, 6) of type 16. Since
C(6, 1, 4, 3) = 6, the conclusion then follows. 
�

Note that a GDD(3, {4, 6}, 2n) of type 2n was constructed for all n ≡ 0 (mod 3) in [26],
but not all of them are good.

Lemma 3.3 [26] There exists a good GDD(3, {4, 6}, 2n) of type 2n for n = 6, 9, 15.

Lemma 3.4 There exists a good GDD(3, {4, 6}, 2n) of type 2n for all n ≡ 0 (mod 6).

Proof For each n = 6k with k ≥ 1, take a CQS(6k : 0), which exists by Lemma 2.2. Give
each point weight two, and construct a GDD(3, 4, 8) of type 24 for each block to get a 4-
HF2(6k : 0). For each hole of the 4-HF2(6k : 0), fill a good GDD(3, {4, 6}, 12) of type 26 to
get a good GDD(3, {4, 6}, 12k) of type 26k as desired. 
�
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Lemma 3.5 There exists an IGDD((9 : 3), 2, {4, 6}, 3) with exactly two blocks of size 6.

Proof The IGDD((9 : 3), 2, {4, 6}, 3) is constructed on Z18 with nine groups {i, i + 9},
i = 0, 1, . . . , 8 and one hole {{i, i + 9} : i = 6, 7, 8}. The two blocks of size 6 are {0, 1, 2,

3, 4, 5} and {9, 10, 11, 12, 13, 14}. The remaining 52 × 3 blocks of size 4 are obtained by
developing the following 52 blocks under the automorphism group 〈(0 1 2)(3 4 5)(6 7 8)

(9 10 11)(12 13 14)(15 16 17)〉.
{3, 5, 6, 7} {5, 6, 11, 17} {0, 6, 12, 17} {0, 5, 10, 17} {1, 3, 9, 13}
{0, 3, 13, 16} {1, 4, 9, 15} {6, 7, 9, 11} {0, 4, 10, 12} {3, 6, 13, 14}
{0, 11, 14, 15} {2, 6, 14, 17} {0, 1, 6, 7} {1, 2, 13, 14} {0, 10, 14, 16}
{5, 8, 11, 16} {2, 12, 13, 16} {3, 5, 9, 11} {3, 7, 11, 13} {0, 1, 8, 14}
{1, 2, 15, 16} {0, 4, 15, 16} {0, 2, 10, 15} {2, 7, 9, 12} {6, 8, 12, 14}
{2, 4, 8, 15} {6, 8, 9, 13} {0, 5, 13, 15} {5, 9, 13, 16} {3, 4, 14, 15}
{4, 9, 11, 17} {5, 7, 11, 15} {1, 4, 7, 11} {1, 4, 8, 12} {6, 11, 12, 16}
{6, 10, 13, 16} {0, 4, 7, 17} {1, 8, 9, 11} {4, 6, 9, 12} {9, 11, 15, 16}
{3, 4, 16, 17} {11, 13, 16, 17} {12, 13, 15, 17} {2, 7, 14, 15} {6, 9, 14, 16}
{0, 3, 8, 15} {2, 4, 6, 7} {0, 4, 6, 14} {0, 4, 8, 11} {0, 6, 11, 13}
{3, 4, 6, 11} {3, 10, 13, 15}.


�
Lemma 3.6 There exists a 4-HF2(35 : 0).

Proof The design is constructed on Z30 with groups Gi = {i, i + 15}, i = 0, 1, . . . , 14 and
five holes Fi = {Gi , Gi + 5, Gi+10}, i = 0, 1, . . . , 4. The following blocks are developed
under the automorphism group Z30.

{0, 6, 13, 27} {0, 8, 11, 29} {0, 3, 12, 17} {0, 4, 10, 23} {0, 1, 4, 7}
{0, 19, 24, 28} {0, 2, 7, 16} {0, 1, 20, 26} {0, 7, 14, 26} {0, 18, 23, 26}
{0, 4, 26, 29} {0, 6, 7, 12} {0, 13, 17, 29} {0, 11, 12, 19} {0, 16, 18, 22}
{0, 3, 20, 23} {0, 1, 3, 28} {0, 5, 7, 13} {0, 5, 17, 26} {0, 2, 4, 13}
{0, 13, 19, 22} {0, 9, 10, 19} {0, 5, 6, 22} {0, 10, 14, 24} {0, 5, 16, 19}
{0, 1, 11, 13} {0, 2, 9, 22} {0, 2, 10, 18} {0, 2, 12, 24} {0, 21, 28, 29}.


�
The following result is based on the construction of a CQS((6n)3 : 2s) by Hartman in

[11, Sect. 4], where the major ingredients in the construction are a class of auxiliary designs
called A-pairings.

Theorem 3.1 There exists a 4-HF2((3n)3 : s) for all 3n ≥ s ≥ 0.

Proof For all 3n ≥ s ≥ 0 and (n, s) �= (1, 1), Hartman in [11, Sect. 4] constructed a
CQS((6n)3 : 2s) on X = {ai : a ∈ Z6n, i ∈ Z3} ∪ {∞1,∞2, . . . ,∞2s} with three groups
{{ai : a ∈ Z6n} : i ∈ Z3} and stem {∞1,∞2, . . . ,∞2s}. Let the block set be B, in which
there is a set of blocks

φ = {{ai , bi , ci+1, di+1} : {a, b} ∈ F (k)
i , {c, d} ∈ F (k)

i+1,

1 ≤ k ≤ 6n − 1 − 2r − 2h, i ∈ Z3},
where F (1)

i |F (2)
i | . . . |F (6n−1−2r−2h)

i is a one-factorization of the graph on Z6n × {i} defined
by the A-pairing A(n, 2s). By the detailed construction of A(n, 2s) in [11, Sect. 5], we know
that 6n − 1 − 2r − 2h ≥ 1.
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Constant weight covering codes and group divisible 3-designs 149

The desired 4-HF2((3n)3 : s) will be on X with the group set G = {{ai , bi } : {a, b} ∈
F (1)

i , i ∈ Z3} ∪ {{∞i ,∞i+s} : 1 ≤ i ≤ s}, three holes Fi+1 = {{ai , bi } : {a, b} ∈
F (1)

i } ∪ F0, i ∈ Z3 intersecting on a common hole F0 = {{∞i ,∞i+s} : 1 ≤ i ≤ s}.
Let

φ1 = {{ai , bi , ci+1, di+1} : {a, b} ∈ F (1)
i , {c, d} ∈ F (1)

i+1, i ∈ Z3}.

Note that φ1 ⊂ φ and each block in φ1 intersects two groups in G which are from two distinct
holes. It is readily checked that B \ φ1 is the block set of the desired 4-HF2((3n)3 : s).

For (n, s) = (1, 1), a 4-HF2(33 : 1) can be obtained by applying Lemma 2.4 with a
CQS(33 : 1) in [9] and a GDD(3, 4, 8) of type 24. 
�

Lemma 3.7 There exists a good GDD(3, {4, 6}, 2n) of type 2n for all n ≡ 3 (mod 6) and
n ≥ 9.

Proof For n = 9, 15, the designs come from Lemma 3.3. For each n = 6m + 3 with m ≥ 3,
there exists a {4, 6}-CS(2m : 2) by Lemma 2.3. Apply Lemma 2.4 with g = 2, t = 3 and
a = 0 to get a 4-HF2(6m : 3). Here the input 4-HF2(3k−1 : 0)s and GDD(3, 4, 6k)s of type
6k with k ∈ {4, 6} exist by Theorems 2.1, 3.1 and Lemma 3.6. For the first m − 1 holes of
the 4-HF2(6m : 3), fill the IGDD((9 : 3), 2, {4, 6}, 3) constructed in Lemma 3.5. Fill the last
hole with a good GDD(3, {4, 6}, 18) of type 29. The result is a good GDD(3, {4, 6}, 2n) of
type 2n . 
�

Combining Lemmas 3.1, 3.2, 3.4 and 3.7, we have

Theorem 3.2 C(n, 2, 4, 3) = L(n, 2, 4, 3) for all n ≥ 4 and n �= 5.

4 Optimal quaternary constant weight covering codes

In this section, we determine K4(n, 4, 3, 1), i.e., C(n, 3, 4, 3). From Theorem 2.1, there exists
a GDD(3, 4, 3n) of type 3n if n ≡ 0 (mod 2), i.e., C(n, 3, 4, 3) = L(n, 3, 4, 3) for all such
n. When n ≡ 1 (mod 2), L(n, 3, 4, 3) = 3n(n − 1)(3n − 5)/8. A GDC(3, 4, 3n) of type 3n

is called good if the excess forms a GDD(2, 3, 3n) of type 3n .

Lemma 4.1 If there exists a good GDC(3, 4, 3n) of type 3n, then C(n, 3, 4, 3) = L(n, 3,

4, 3).

Proof It is easy to check that the number of blocks in a good GDC(3, 4, 3n) of type 3n equals
L(n, 3, 4, 3). 
�

Lemma 4.2 There exists a good GDC(3, 4, 3n) of type 3n for each n ∈ {5, 7, 9, 11}.

Proof For each given n ∈ {5, 7, 9, 11}, a good GDC(3, 4, 3n) of type 3n is constructed on
Z3n with groups {i, i + n, i + 2n}, i = 0, 1, . . . , n − 1. The following blocks are developed
under the automorphism group Z3n .
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n = 5 :
{0, 1, 2, 4} {0, 1, 4, 13} {0, 1, 7, 9} {0, 1, 8, 12} {0, 2, 8, 11};
n = 7 :
{0, 11, 15, 17} {0, 12, 18, 20} {0, 8, 9, 11} {0, 1, 6, 11} {0, 16, 17, 20}
{0, 2, 8, 18} {0, 3, 5, 8} {0, 9, 12, 15} {0, 8, 19, 20} {0, 4, 8, 16}
{0, 1, 12, 16} {0, 2, 4, 13};
n = 9 :
{0, 5, 21, 25} {0, 6, 13, 17} {0, 10, 11, 22} {0, 4, 7, 17} {0, 21, 23, 26}
{0, 2, 12, 13} {0, 3, 15, 19} {0, 12, 22, 25} {0, 13, 24, 26} {0, 12, 19, 20}
{0, 5, 19, 24} {0, 1, 3, 11} {0, 4, 12, 23} {0, 5, 7, 20} {0, 3, 25, 26}
{0, 5, 22, 26} {0, 5, 11, 12} {0, 6, 8, 14} {0, 3, 6, 10} {0, 6, 13, 16}
{0, 1, 7, 13} {0, 2, 4, 19};
n = 11 :
{0, 1, 10, 14} {0, 17, 18, 21} {0, 21, 23, 29} {0, 25, 29, 32} {0, 9, 19, 25}
{0, 9, 14, 26} {0, 1, 13, 17} {0, 8, 16, 23} {0, 2, 6, 19} {0, 17, 20, 30}
{0, 1, 15, 16} {0, 21, 28, 31} {0, 2, 5, 14} {0, 4, 6, 9} {0, 3, 8, 24}
{0, 8, 10, 29} {0, 13, 21, 26} {0, 7, 9, 24} {0, 5, 6, 8} {0, 4, 12, 13}
{0, 14, 17, 23} {0, 2, 10, 28} {0, 1, 5, 31} {0, 13, 15, 28} {0, 2, 16, 31}
{0, 9, 15, 21} {0, 8, 18, 28} {0, 6, 13, 25} {0, 15, 27, 30} {0, 1, 8, 32}
{0, 23, 28, 32} {0, 7, 14, 30} {0, 20, 26, 27} {0, 1, 6, 20} {0, 4, 10, 19}.


�
To introduce the recursive construction, we need to define the concept of incomplete good

group divisible coverings. Let X be the point set of size 3n, where G is the equipartition of X
into n groups of size 3. Suppose H ⊂ G is a hole of size m, which is a collection of m groups.
B is a family of transverse quadruples (blocks) such that, no block contains transverse triples
in the hole, each transverse triple not in the hole occurs at least once in the blocks, and the
excess forms a GDD(2, 3, 3n) of type 3n−m(3m)1. Then (X, G, H, B) is called an incomplete
good GDC(3, 4, 3n) of type (3n : 3m).

Lemma 4.3 Suppose that there exists a 4-MHF3(mn : s). If there exists an incomplete good
GDC(3, 4, 3(m+s)) of type (3m+s : 3s), then there exist incomplete good GDC(3, 4, 3(mn+
s))s of types (3mn+s : 3s) and (3mn+s : 3m+s). Furthermore, if there exists a good
GDC(3, 4, 3(m + s)) of type 3m+s , then there exists a good GDC(3, 4, 3(mn + s)) of type
3mn+s .

Proof Let (X, G, B, F) be the given 4-MHF3(mn : s), where G1 = {α, β} is the special
group of size 2 belonging to the common hole F0. Let G ′

1 = G1 ∪ {∞}, where ∞ /∈ X . Let
X ′ = X ∪{∞}, G′ = G ∪{G ′

1} \ {G1}, F ′ = {F ∪{G ′
1} \ {G1} : F ∈ F}. Let Tα = {B \ {α} :

α ∈ B ∈ B}. Then Tα forms a GDD(2, 3, 3mn) of type (3m)n on X \ (∪G∈F0 G) with group
set {∪G∈(F\F0)G : F ∈ F, F �= F0}. Let B∞ = {T ∪ {∞} : T ∈ Tα} and B′ = B ∪ B∞.
For each hole F ′ ∈ F ′ of size m + s, construct an incomplete good GDC(3, 4, 3(m + s))
of type (3m+s : 3s) with a hole F ′

0 = F0 ∪ {G ′
1} \ {G1}. Denote the block set by AF ′ ,

the excess of which forms a GDD(2, 3, 3(m + s)) of type 3m(3s)1 with the long group
∪G∈F ′

0
G. Let C = B′ ∪ (∪F ′∈F ′,F ′ �=F ′

0
AF ′). It is easy to check that the excess of C forms a

GDD(2, 3, 3(mn + s)) of type 3mn(3s)1 with the long group ∪G∈F ′
0
G. Hence C is the block

set of an incomplete good GDC(3, 4, 3(mn + s)) of type (3mn+s : 3s) on X ′ with group set
G′ and a hole F ′

0. If we leave the last hole as it is, or fill it with a good GDC(3, 4, 3(m + s))
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of type 3m+s , then we get an incomplete good GDC(3, 4, 3(mn + s)) of type (3mn+s : 3m+s)

or a good GDC(3, 4, 3(mn + s)) of type 3mn+s . 
�

Lemma 4.4 There exists an incomplete good GDC(3, 4, 21) of type (37 : 33).

Proof The design is constructed on Z21 with seven groups {i, i + 7, i + 14}, i = 0, 1, . . . , 6
and one hole {{i, i + 7, i + 14} : i = 4, 5, 6}. The following blocks are developed by the
automorphism group

〈(0 7 14)(1 2 3 8 9 10 15 16 17)(4 5 6 11 12 13 18 19 20)〉.
{1, 7, 13, 18} {11, 1, 7, 12} {18, 8, 9, 12} {0, 8, 10, 13} {0, 4, 6, 16}
{0, 10, 11, 16} {16, 4, 8, 14} {6, 14, 17, 19} {2, 5, 15, 18} {9, 0, 6, 8}
{2, 3, 5, 20} {0, 3, 8, 11} {1, 10, 12, 16} {6, 7, 8, 19} {1, 5, 13, 17}
{6, 8, 11, 14} {6, 7, 12, 16} {10, 13, 16, 18} {3, 13, 15, 19} {8, 10, 19, 20}
{7, 11, 13, 16} {2, 6, 7, 17} {6, 2, 10, 11} {0, 2, 6, 19} {1, 2, 12, 17}
{1, 6, 9, 19} {0, 2, 3, 15}.


�

Lemma 4.5 There exists an incomplete good GDC(3, 4, 27) of type (39 : 33).

Proof The design is constructed on Z27 with groups {i, i + 9, i + 18}, i = 0, 1, . . . , 8
and one hole {{i, i + 9, i + 18} : i = 6, 7, 8}. The following blocks are developed by the
automorphism group

〈(0 1 2 9 10 11 18 19 20)(3 4 5 12 13 14 21 22 23)(6 7 8)(15 16 17)(24 25 26)〉.
{5, 7, 18, 19} {10, 4, 11, 26} {5, 9, 12, 24} {6, 11, 19, 25} {4, 11, 23, 25}
{2, 5, 8, 15} {0, 11, 25, 26} {10, 11, 12, 23} {8, 11, 22, 24} {0, 8, 13, 16}
{1, 8, 15, 18} {7, 13, 21, 23} {8, 14, 18, 25} {4, 7, 8, 19} {0, 5, 13, 15}
{22, 9, 20, 21} {7, 19, 21, 24} {10, 18, 20, 22} {22, 14, 16, 18} {5, 15, 18, 20}
{3, 9, 13, 26} {5, 7, 13, 26} {4, 7, 20, 21} {2, 3, 16, 22} {7, 11, 14, 18}
{9, 16, 17, 19} {0, 5, 7, 24} {8, 0, 2, 7} {11, 12, 17, 24} {10, 18, 23, 26}
{3, 9, 20, 24} {1, 2, 13, 16} {10, 11, 14, 25} {2, 13, 18, 19} {2, 7, 14, 19}
{14, 1, 22, 24} {3, 4, 6, 10} {13, 14, 15, 17} {2, 3, 6, 23} {1, 17, 23, 24}
{5, 16, 18, 24} {4, 17, 18, 24} {3, 6, 17, 20} {0, 3, 4, 11} {11, 21, 22, 23}
{11, 14, 19, 22} {1, 12, 17, 22} {25, 0, 17, 20} {0, 2, 22, 24} {8, 3, 6, 13}
{10, 22, 25, 26} {3, 7, 17, 23} {4, 5, 24, 25} {2, 4, 14, 16} {5, 15, 21, 26}
{0, 3, 7, 10} {5, 8, 11, 19} {0, 4, 8, 20} {8, 11, 16, 21} {22, 2, 5, 12}
{4, 1, 14, 26} {13, 16, 19, 21} {0, 2, 16, 23} {0, 3, 15, 17} {0, 15, 19, 20}.


�

Lemma 4.6 There exists a 4-MHF3(23 : 1).

Proof The design is constructed on Z20 with groups Gi = {i, i +6, i +12}, i = 0, 1, . . . , 5,
and three holes {Gi , Gi+3} ∪ S, i = 0, 1, 2 intersecting on the common hole S = {{18, 19}}.
The desired blocks are obtained by developing the following base blocks under the
automorphism group
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〈(0 6 12)(1 7 13)(2 8 14)(3 9 15)(4 10 16)(5 11 17)(18)(19)〉.
{3, 5, 6, 8} {0, 10, 11, 18} {2, 10, 13, 17} {0, 2, 9, 10} {4, 8, 12, 13}
{0, 8, 16, 18} {0, 3, 4, 7} {2, 3, 10, 19} {0, 14, 16, 19} {9, 10, 11, 19}
{6, 9, 11, 16} {0, 7, 9, 11} {1, 9, 17, 18} {4, 9, 17, 19} {6, 11, 13, 19}
{0, 7, 15, 16} {0, 1, 4, 15} {5, 8, 10, 13} {0, 5, 13, 16} {1, 5, 9, 19}
{0, 2, 4, 5} {2, 9, 16, 18} {7, 10, 14, 15} {1, 11, 15, 18} {4, 5, 6, 9}
{5, 10, 12, 14} {0, 4, 11, 13} {6, 7, 17, 19} {0, 4, 17, 18} {1, 2, 4, 12}
{1, 2, 5, 10} {4, 7, 9, 12} {1, 8, 10, 15} {2, 3, 5, 7} {2, 5, 9, 12}
{3, 8, 12, 16} {12, 13, 14, 15} {5, 9, 14, 16} {1, 8, 11, 12} {2, 5, 15, 16}
{0, 10, 17, 19} {3, 7, 8, 19} {0, 9, 13, 17} {0, 1, 8, 17} {2, 7, 9, 19}
{5, 8, 12, 15} {0, 4, 8, 19} {10, 11, 13, 14} {1, 2, 9, 11} {11, 13, 15, 16}
{2, 3, 12, 17} {0, 3, 8, 13} {4, 5, 13, 15} {1, 4, 5, 14} {10, 15, 17, 18}
{3, 10, 12, 13} {2, 3, 6, 11} {12, 13, 17, 18} {0, 2, 13, 19} {0, 2, 7, 18}
{0, 13, 14, 18} {1, 3, 8, 18} {2, 3, 4, 18}.


�
Lemma 4.7 There exists a 4-MHF3(25 : 1).

Proof The design is constructed on Z32 with groups Gi = {i, i +10, i +20}, i = 0, 1, . . . , 9
and five holes {Gi , Gi+5} ∪ S, i = 0, 1, 2, 3, 4 intersecting on the common hole S =
{{30, 31}}. The desired blocks are obtained by developing the following base blocks under
the automorphism group

〈(0 1 2 3 4 5 6 · · · 21 22 23 24 25 26 27 28 29)(30 31)〉.
{12, 17, 26, 28} {15, 24, 27, 31} {10, 18, 22, 24} {2, 6, 17, 19} {6, 12, 19, 31}
{7, 19, 22, 25} {1, 9, 23, 27} {2, 7, 19, 24} {6, 7, 23, 24} {3, 6, 7, 22}
{0, 4, 18, 31} {2, 3, 5, 10} {18, 25, 26, 29} {2, 11, 18, 20} {6, 14, 23, 31}
{1, 18, 22, 27} {2, 3, 4, 31} {3, 18, 24, 25} {6, 11, 14, 27} {13, 15, 19, 22}
{19, 22, 24, 26} {4, 23, 25, 28} {12, 15, 26, 30} {18, 19, 23, 24} {2, 6, 13, 30}
{7, 12, 19, 26} {11, 13, 19, 31} {2, 13, 19, 21} {12, 14, 15, 29} {7, 8, 26, 29}
{0, 1, 7, 12} {0, 6, 14, 21} {2, 9, 15, 21}.


�
Lemma 4.8 There exists a good GDC(3, 4, 3n) of type 3n for all n ≡ 3 (mod 4) and n ≥ 7.

Proof For n = 7, 11, the required designs come from Lemma 4.2. For each n = 4m+3, m ≥
3, take a {4, 6}-CS(2m : 2) in Lemma 2.3. Applying Lemma 2.4 with a 4-MHF3(2k−1 : 1)

and a GDD(3, 4, 6k) of type 6k , k ∈ {4, 6}, we get a 4-MHF3(4m : 3). Then apply Lemma 4.3
with m − 1 incomplete good GDC(3, 4, 21)s of type (37 : 33) and a good GDC(3, 4, 21) of
type 37 to complete the proof. Here the ingredient designs come from Lemmas 4.4, 4.6 and
4.7. 
�

The following result on a 4-MHF3((2n)3 : s) is again based on the construction of
CQS((6n)3 : 2s) by Hartman in [11, Sect. 4]. First we introduce some useful notations. For
x ∈ Zn , we define |x | by x if 0 ≤ x ≤ n/2 and n − x if n/2 < x < n. For any edge
set E of a graph on Zn , we use L E to denote the set of edge lengths of edges in E , i.e.,
L E = {|x − y| : {x, y} ∈ E}. For n ≥ 2 and L ⊆ {1, 2, . . . , �n/2�}, let G(n, L) be the
regular graph with vertex set Zn and edge set E such that {x, y} ∈ E if and only if |x −y| ∈ L .

Theorem 4.1 For each pair of positive integer n and odd integer s such that 6n ≥ 3s − 1,
there exists a 4-MHF3((2n)3 : s).
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Proof For (n, s) = (1, 1), the design exists by Lemma 4.6. For each pair of positive integer
n and odd integer s such that 6n ≥ 3s − 1 and (n, s) �= (1, 1), we construct the auxiliary
designs (D, H, R0, R1, R2)(n,s) on Z6n , which are similar to but different from A-pairings
in [11]. Here the edge length 2n is not allowed to occur in any edge.

1. When n = 2 and s = 1, let D = {4, 10}, H = {{1,−1}, {2, 7}}, R0 = {{3, 6}},
R1 = {{5, 8}} and R2 = {{0, 9}}.

2. When n ≥ 3 and s = 1, let D = {2n, 4n − 1}, H = {{1,−1}, {2,−2}}, R0 = {{0, 2n −
1}}∪{{k, 2n−k+1} : k = 3, 4, . . . , n}, R1 = {{2n+k, 4n−k−1} : k = 1, 2, . . . , n−1}
and R2 = {{4n + k, 6n − 3 − k} : k = 0, 1, . . . , n − 2}.

3. When odd s ≥ 3 and 6n ≥ 3s − 1, the (D, H, R0, R1, R2)(n,s) is constructed recur-
sively from the (D′, H ′, R′

0, R′
1, R′

2)(n,s−2). Let ri be any member of R′
i . Then D =

D′ ∪ (∪i=2
i=0ri ), H = H ′ and Ri = R′

i \ {ri }, i = 0, 1, 2.

For each pair of (n, s) above, it is easy to check that the complement of the graph
G(6n, L H ∪ L Ri ∪ {2n}) has a one-factorization F (1)

i |F (2)
i | . . . |F (4n+s−6)

i for each i =
0, 1, 2. Now the desired 4-MHF3((2n)3 : s) is constructed on X = {ai : a ∈ Z6n, i ∈
Z3} ∪ {∞1,∞2, . . . ,∞3s−1} with groups Gi, j = { ji , ( j + 2n)i , ( j + 4n)i }, i = 0, 1, 2,
j = 0, . . . , 2n − 1 and groups G∞, j = {∞ j ,∞ j+s,∞ j+2s}, j = 1, 2, . . . , s − 1 and
G∞,s = {∞s,∞2s}. And there are three holes Fi = {Gi, j : j = 0, . . . , 2n − 1} ∪ S,
i = 0, 1, 2 intersecting on the common hole S = {G∞, j : j = 1, 2, . . . , s}. Let the block
set be B, which consists of the following five sets of blocks.

δ = {{∞ j , (a + d)0, (b − d)1, (c + d)2} : a + b + c ≡ 0 (mod 6n),

d is the j th member of D, 1 ≤ j ≤ 3s − 1},
ρ = {{(a + q)i , (a + t)i , bi+1, ci+2} : a + b + c ≡ 0 (mod 6n),

{q, t} ∈ Ri , i ∈ Z3},
φ = {{ai , bi , ci+1, di+1} : {a, b} ∈ F (k)

i , {c, d} ∈ F (k)
i+1,

1 ≤ k ≤ 4n + s − 6, i ∈ Z3},
χ1 = {{ai+1, (a + 3ε)i+2, (x − 2a − 3ε)i , (y − 2a − 3ε)i } :

a ∈ Z6n, i ∈ Z3, ε ∈ Z2n, {x, y} ∈ H} and

χ2 = {{ai , (a + |x − y|)i , (a + 3ε)i+1, (a + 3ε + |x − y|)i+1} :
a ∈ Z6n, i ∈ Z3, ε ∈ Z2n, {x, y} ∈ H}.

The rest of the proof is similar to that in [11]. We omit the details here. 
�
Lemma 4.9 There exists a good GDC(3, 4, 3n) of type 3n for all n ≡ 5 (mod 8).

Proof For n = 5, the required design comes from Lemma 4.2. For each given n ≡
5, 13 (mod 24) and n ≥ 13, take a CQS(1(n−1)/4 : 1) obtained from an SQS((n + 3)/4).
Applying Lemma 2.4 with a 4-MHF3(43 : 1) and a GDD(3, 4, 48) of type 124, we get a
4-MHF3(4(n−1)/4 : 1). Then apply Lemma 4.3 with a good GDC(3, 4, 15) of type 35 to get the
desired design. Here the input ingredient design 4-MHF3(43 : 1) comes from Theorem 4.1.

For n = 21, take a 4-MHF3(63 : 3) in Theorem 4.1. Apply Lemma 4.3 with an incom-
plete good GDC(3, 4, 27) of type (39 : 33) from Lemma 4.5 and a good GDC(3, 4, 27) of
type 39 from Lemma 4.2 to get a good GDC(3, 4, 63) of type 321 and an incomplete good
GDC(3, 4, 63) of type (321 : 39).

For n = 45, take a 4-MHF3(123 : 9) in Theorem 4.1. Apply Lemma 4.3 with a good
GDC(3, 4, 63) of type 321 and an incomplete good GDC(3, 4, 63) of type (321 : 39) to get a
good GDC(3, 4, 135) of type 345 and an incomplete good GDC(3, 4, 135) of type (345 : 321).
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For n = 69, take a 4-MHF3(83 : 1) from Theorem 4.1. Apply Lemma 4.3 with a good
GDC(3, 4, 27) of type 39 and an incomplete good GDC(3, 4, 27) of type (39 : 33) to get an
incomplete good GDC(3, 4, 75) of type (325 : 33) and a good GDC(3, 4, 75) of type 325.
Then take a 4-MHF3(223 : 3) by Theorem 4.1 and apply Lemma 4.3 with an incomplete
good GDC(3, 4, 75) of type (325 : 33) and a good GDC(3, 4, 75) of type 325 to get a good
GDC(3, 4, 207) of type 369.

For each n = 24k + 21 and k ≥ 3, we first claim that there exists a CQS(6k : 6). In fact,
assume (X, G, B) is a GDD(3, 4, 6(k +1)) of type 6k+1 with G = {Gi : i = 1, 2, . . . , k +1}.
For each i = 1, 2, . . . , k, there exists a one-factorization F (1)

i |F (2)
i | · · · |F (5)

i on the complete
graph with vertex set Gi . For each pair {i, j} ⊂ {1, 2, . . . , k}, let Ai, j = {{a, b, c, d} :
{a, b} ∈ F (l)

i , {c, d} ∈ F (l)
j , l = 1, 2, . . . , 5}. Then B ∪ (∪{i, j}⊂{1,2,...,k}Ai, j ) is the block set

of a CQS(6k : 6) on X with groups G \ {Gk+1} and stem Gk+1. Now take this CQS(6k : 6),
apply Lemma 2.4 with a 4-MHF3(43 : 1) and a GDD(3, 4, 48) of type 124. The result is a
4-MHF3(24k : 21). Then apply Lemma 4.3 with a good GDC(3, 4, 135) of type 345 and an
incomplete good GDC(3, 4, 135) of type (345 : 321) to get the desired design. 
�
Theorem 4.2 For each pair of positive integer n and odd integer s such that 6n ≥ 3s − 1,
there exists a 4-MHF3((2n)4 : s).

Proof For each n and odd s with 6n ≥ 3s − 1, Granville and Hartman in [7] constructed a
CQS((6n)4 : 3s − 1) on X = {ai : a ∈ Z6n, i ∈ Z4} ∪ {∞1,∞2, . . . ,∞3s−1} with four
groups {{ai : a ∈ Z6n} : i ∈ Z4} and stem {∞1,∞2, . . . ,∞3s−1} by defining a Hanani
factorization, which is a four-tuple (D, E, G, H) such that D ⊂ {1, 3, 5, . . . , 6n − 1} and
E ⊂ {0, 2, 4, . . . , 6n − 2}, |D| = |E | = (3s − 1)/2, G = {G0, G1, . . . , G3n−1} is a set of
partial one-factors of the complete graph on vertex set Z6n with |Gi | = 3n − (3s − 1)/2
covering Z6n \ ((D ∪ E) + 2i) for i ∈ {0, 1, . . . , 3n − 1}, and H is a set of one-factors such
that G ∪ H is a partition of the edge set of the complete graph on vertex set Z6n . Now we
modify the construction to get a 4-MHF3((2n)4 : s). Define � to be the graph which covers
all the edges in G. By the direct construction of Hanani factorization [7, Theorem 6.1], � is
cyclic and contains no edge of length 2n. Let ϒ be the complete multipartite graph with 2n
parts {i, i + 2n, i + 4n}, i = 0, 1, . . . , 2n − 1. It is not difficult to verify that the complement
of � in ϒ has a one-factorization, which is denoted by H′. Replace H by H′ in the whole
construction of the CQS((6n)4 : 3s − 1). Additionally, replace the one-factorization of the
complete graph on Z6n , J0|J1| . . . |J6n−2, in the final set of blocks

{{hi , hi , a j , a j } : {i, j} ∈ {{0, 1}, {2, 3}}, {h, h}, {a, a} ∈ Jk, 0 ≤ k ≤ 6n − 2}
with a one-factorization of ϒ .

Let Gi, j = { ji , ( j + 2n)i , ( j + 4n)i } for i = 0, 1, 2, 3, j = 0, . . . , 2n − 1, G∞, j =
{∞ j ,∞ j+s,∞ j+2s} for j = 1, 2, . . . , s − 1 and G∞,s = {∞s,∞2s}. Then, the blocks
constructed above will form the block set of a 4-MHF3((2n)4 : s) on X with groups {Gi, j :
i = 0, 1, 2, 3, j = 0, . . . , 2n − 1} ∪ {G∞, j : j = 1, 2, . . . , s} and four holes Fi = {Gi, j :
j = 0, . . . , 2n − 1} ∪ S, i = 0, 1, 2, 3 intersecting on the common hole S = {G∞, j : j =
1, 2, . . . , s}. 
�
Lemma 4.10 There exists a good GDC(3, 4, 3n) of type 3n for all n ≡ 1 (mod 8) and
n ≥ 9.

Proof For each n = 8k + 1 and k ≥ 1, the proof proceeds by induction. For k = 1, a good
GDC(3, 4, 27) of type 39 exists by Lemma 4.2. When k > 1, suppose that there exists a

123



Constant weight covering codes and group divisible 3-designs 155

good GDC(3, 4, 3(8i + 1)) of type 38i+1 for each i < k. By Lemmas 4.8 and 4.9, we have
that a good GDC(3, 4, 3 j) of type 3 j exists for all odd j < 8k + 1. Applying Lemma 4.3
to a 4-MHF3((2k)4 : 1) with a good GDC(3, 4, 3(2k + 1)) of type 32k+1, we get a good
GDC(3, 4, 3(8k + 1)) of type 38k+1. This completes the proof. 
�

Combining Lemmas 4.8, 4.9 and 4.10, we have

Theorem 4.3 C(n, 3, 4, 3) = L(n, 3, 4, 3) for all n ≥ 4.

5 Optimal constant weight covering codes over Z2m+1

In this section we focus our attention on the determination of Kq(n, 4, 3, 1) for n ≥ 4 and
q = 2m + 1 with m ≥ 2. We will give a general result for optimal group divisible coverings
with group size 2m for all m ≥ 2, i.e., optimal (n, 4, 3, 1) constant weight covering codes over
Z2m+1. From Theorem 2.1, there exists a GDD(3, 4, gn) of type gn for g ≡ 2, 4 (mod 6),
g �≡ 10, 26 (mod 48) and n ≡ 1, 2 (mod 3), which means C(n, g, 4, 3) = L(n, g, 4, 3)

for all such pairs of g and n. Now we consider the case for g ≡ 2, 4 (mod 6) and n ≡ 0
(mod 3). It is easy to calculate that L(n, g, 4, 3) = g3n(n −1)(n −2)/24+gn/6. So if there
exists a GDD(3, {4, 6}, gn) of type gn with exactly ng

6 blocks of size 6, then we can get a
GDC(3, 4, gn) of type gn with L(n, g, 4, 3) blocks by replacing the blocks of size 6 with an
OGDC(3, 4, 6) of type 16.

Similar to the definition in Sect. 3, we call a GDD(3, {4, 6}, gn) of type gn is good if it
contains exactly ng

6 blocks of size 6.

Lemma 5.1 If there exists a good GDD(3, {4, 6}, gn) of type gn, then there exists a good
GDD(3, {4, 6}, 2gn) of type (2g)n.

Proof Suppose that (X, G, B) is the given good GDD(3, {4, 6}, gn) of type gn with exactly
gn/6 blocks of size 6. Let X ′ = X × Z2 and G′ = {G × Z2 : G ∈ G}. For each B ∈ B
of size 4, construct a GDD(3, 4, 8) of type 24 on B × Z2 with groups {x} × Z2, x ∈ B.
Denote the block set by AB . For each B ∈ B of size 6, construct a good GDD(3, 4, 12) of
type 26 on B × Z2 with groups {x} × Z2, x ∈ B. Denote the block set by CB . Then it is easy
to check that (X ′, G′, (∪B∈B,|B|=4AB) ∪ (∪B∈B,|B|=6CB)) is a GDD(3, {4, 6}, 2gn) of type
(2g)n with gn/3 blocks of size 6. Hence the resultant design is a good GDD(3, {4, 6}, 2gn)

of type (2g)n . 
�
For all integers m ≥ 2, it is clear that 2m ≡ 2, 4 (mod 6) and 2m �≡ 10, 26 (mod 48).

Combining Theorem 2.1, Lemma 5.1 together with Lemmas 3.4 and 3.7, we have the fol-
lowing result.

Theorem 5.1 C(n, 2m, 4, 3) = L(n, 2m, 4, 3) for all m ≥ 2 and n ≥ 4.

6 Nonuniform group divisible 3-designs with block size four

In this section, we will employ the construction methods using H-frames to establish several
new existence results for GDD(3, 4, 2n +u)s of type 2nu1 for u = 4, 6, 8. As a consequence
of the necessary conditions for GDD(3, 4, gn + u) of type gnu1 stated in [18, Theorem 3.1],
we have the following lemma.
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Lemma 6.1 If there exists a GDD(3, 4, 2n+u) of type 2nu1 with u = 4, then n ≡ 1 ( mod 3)

and n ≥ 4; with u = 6, then n ≡ 1 (mod 3) and n ≥ 7; with u = 8, then n ≡ 0, 1 (mod 3)

and n ≥ 6.

The following recursive construction for nonuniform group divisible 3-designs was first
given in [19].

Lemma 6.2 [19] Let mn be even. If there exists a GDD(3, 4, mnr + s + t) of type
(mn)r (s + t)1 and a GDD(3, 4, mn + s + t) of type mns1t1, then there exists a GDD(3, 4,

mnr + s + t) of type mrns1t1.

The following construction is a modification of the filling holes construction for Steiner
quadruple systems using candelabra quadruple systems.

Lemma 6.3 Suppose that there exists a 4-HFg(mn : s). If there exists a GDD(3, 4, g(m+s))
of type gm+ε(gs − gε)1 with ε = 0 or 1, then there exists a GDD(3, 4, g(mn + s)) of type
gmn+ε(gs − gε)1.

Proof Let (X, G, B, F) be the given 4-HFg(mn : s). Let F0 = {G∞,1, G∞,2, . . . , G∞,s}
be the common hole. When ε = 0, for each hole F = {G1, G2, . . . , Gm} ∪ F0 of
size m + s, construct a GDD(3, 4, g(m + s)) of type gm(gs)1 on ∪G∈F G with group set
{G1, G2, . . . , Gm} ∪ {∪G∈F0 G} and block set AF . Then B ∪ (∪F∈F\F0AF ) is the block
set of a GDD(3, 4, g(mn + s)) of type gmn(gs)1 with group set {G ∈ F \ F0 : F ∈
F} ∪ {∪G∈F0 G}. When ε = 1, for each hole F = {G1, G2, . . . , Gm} ∪ F0 of size
m + s, construct a GDD(3, 4, g(m + s)) of type gm + 1(gs − g)1 on ∪G∈F G with group set
{G1, G2, . . . , Gm, G∞,1} ∪ {(∪G∈F0 G) \ G∞,1} and block set CF . Then B ∪ (∪F∈F\F0CF )

is the block set of a GDD(3, 4, g(mn + s)) of type gmn + 1(gs − g)1 with group set
{G ∈ F \ F0 : F ∈ F} ∪ {G∞,1} ∪ {(∪G∈F0 G) \ G∞,1}. 
�

6.1 u = 4

Lemma 6.4 [19] There exists a GDD(3, 4, 2n + 4) of type 2n41 for n = 4, 7.

Theorem 6.1 There exists a GDD(3, 4, 2n + 4) of type 2n41 if and only if n ≡ 1 (mod 3)

and n ≥ 4.

Proof For each given n = 3k +1 and n ≥ 10, there exists a GDD(3, 4, 6(k +1)) of type 6k+1

by Theorem 2.1. Applying Lemma 6.2 with m = 2, n = 3, s = 2, t = 4 and a GDD(3, 4, 12)

of type 2441, we get a GDD(3, 4, 2n + 4) of type 2n41. For n = 4, 7, the desired designs
exist by Lemma 6.4. 
�

6.2 u = 6

Lemma 6.5 There exists a 4-HF2(35 : 1).

Proof The desired design is obtained by applying Lemma 2.4 with a CQS(35 : 1) in [1] and
a GDD(3, 4, 8) of type 24. 
�
Lemma 6.6 There exists a GDD(3, 4, 20) of type 2761.
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Proof We construct the design on Z20 with group set G = {{i, i + 7} : 0 ≤ i ≤ 6} ∪
{{14, 15, 16, 17, 18, 19}}. We list the base blocks below which are developed under the auto-
morphism group

G = 〈(0 1 2)(3 4 5)(6)(7 8 9)(10 11 12)(13)(14 15 16)(17 18 19)〉.
{0, 4, 13, 18} {1, 2, 7, 15} {2, 3, 4, 15} {3, 9, 13, 18} {1, 9, 13, 17}
{5, 6, 11, 14} {0, 3, 8, 18} {4, 7, 10, 15} {1, 4, 12, 14} {0, 1, 4, 17}
{0, 2, 5, 14} {0, 6, 9, 15} {3, 4, 7, 17} {3, 11, 12, 18} {1, 7, 9, 18}
{2, 10, 12, 14} {0, 4, 6, 19} {7, 10, 13, 17} {0, 5, 6, 18} {0, 3, 5, 17}
{1, 4, 5, 7} {4, 5, 9, 17} {4, 6, 7, 18} {8, 9, 12, 16} {2, 8, 12, 15}
{1, 4, 10, 13} {7, 11, 13, 16} {4, 6, 8, 12} {0, 9, 12, 18} {0, 1, 12, 19}
{1, 10, 12, 15} {3, 7, 8, 14} {1, 2, 11, 19} {3, 5, 13, 16} {0, 1, 5, 11}
{0, 1, 13, 16} {0, 3, 6, 14} {8, 10, 11, 14} {2, 4, 7, 14} {7, 8, 12, 18}
{3, 7, 12, 19} {3, 7, 9, 15} {3, 8, 12, 17} {0, 6, 8, 11} {2, 8, 10, 18}
{1, 9, 10, 11} {5, 7, 8, 10} {0, 4, 8, 14} {1, 11, 13, 15} {5, 6, 7, 15}
{3, 5, 11, 15} {5, 7, 13, 14} {1, 3, 11, 17} {6, 7, 8, 17} {1, 12, 13, 18}
{6, 7, 12, 14} {1, 3, 7, 13} {2, 6, 11, 15} {3, 11, 13, 19} {7, 12, 13, 15}
{7, 10, 11, 18} {0, 6, 10, 17} {6, 10, 11, 19} {1, 5, 10, 16} {0, 1, 2, 6}
{3, 4, 5, 6} {7, 8, 9, 13} {10, 11, 12, 13}.


�

Lemma 6.7 There exists a GDD(3, 4, 32) of type 21361.

Proof We construct the design on Z26 ∪ {∞0, . . . ,∞5} with group set G = {{i, i + 13} :
0 ≤ i ≤ 12} ∪ {{∞0, . . . ,∞5}}. We list the base blocks below which are developed under
the cyclic group Z26:

{0, 15, 19,∞0} {0, 8, 20,∞0} {0, 9, 25,∞0} {0, 3, 24,∞0}
{0, 6, 11,∞1} {0, 10, 24,∞1} {0, 17, 18,∞1} {0, 4, 23,∞1}
{0, 12, 15,∞2} {0, 1, 18,∞2} {0, 6, 22,∞2} {0, 19, 24,∞2}
{0, 20, 25,∞3} {0, 4, 14,∞3} {0, 2, 9,∞3} {0, 15, 23,∞3}
{0, 20, 22,∞4} {0, 9, 12,∞4} {0, 1, 8,∞4} {0, 5, 16,∞4}
{0, 1, 15,∞5} {0, 17, 21,∞5} {0, 18, 20,∞5} {0, 3, 19,∞5}
{0, 10, 14, 18} {0, 5, 9, 10} {0, 2, 7, 14} {0, 2, 16, 19}
{0, 19, 23, 25} {0, 22, 23, 24} {0, 3, 9, 21} {0, 6, 15, 20}
{0, 11, 22, 25} {0, 9, 11, 19} {0, 4, 19, 20} {0, 3, 5, 23}
{0, 4, 18, 25} {0, 8, 17, 23} {0, 8, 10, 19} {0, 1, 6, 16}.


�

Theorem 6.2 There exists a GDD(3, 4, 2n + 6) of type 2n61 for all n ≡ 1 (mod 6) and
n ≥ 7.

Proof For n = 7, 13, the required designs exist by Lemmas 6.6 and 6.7. For each given
n ≡ 1 (mod 6) and n ≥ 19, there exists a {4, 6}-CS(2(n−1)/6 : 2). Apply Lemma 2.4
with a 4-HF2(3k−1 : 1) and a GDD(3, 4, 6k) of type 6k with k ∈ {4, 6} to obtain a 4-
HF2(6(n−1)/6 : 4). Applying Lemma 6.3 with a GDD(3, 4, 22) of type 2761 in Lemma 6.6,
we get a GDD(3, 4, 2n + 6) of type 2n61. Here, the small ingredients are from Theorem 3.1
and Lemma 6.5. 
�
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6.3 u = 8

Lemma 6.8 [19] There exists a GDD(3, 4, 2n + 8) of type 2n81 for n = 6, 7.

Lemma 6.9 There exists a GDD(3, 4, 34) of type 21381.

Proof We construct the design on Z34 with group set G = {{i, i + 13} : 0 ≤ i ≤ 12} ∪
{{26, 27, 28, 29, 30, 31, 32, 33}}. The base blocks below will be developed under the follow-
ing automorphism group:

〈(0 1 2 3 4 5 6 7 8 · · · 19 20 21 22 23 24 25)(26 27)(28 29)(30 31)(32 33)〉
{1, 4, 7, 26} {2, 4, 20, 27} {8, 11, 16, 23} {0, 6, 11, 21} {9, 16, 24, 31}
{1, 3, 21, 32} {0, 15, 24, 31} {10, 11, 21, 27} {15, 18, 25, 31} {9, 21, 23, 24}
{6, 9, 11, 33} {11, 18, 20, 26} {0, 14, 18, 30} {6, 14, 17, 32} {7, 9, 11, 18}
{0, 7, 11, 26} {6, 9, 17, 23} {3, 6, 22, 24} {8, 20, 24, 32} {9, 10, 12, 30}
{10, 21, 25, 29} {6, 16, 20, 23} {9, 10, 24, 33} {5, 7, 13, 29} {2, 9, 10, 14}
{13, 14, 20, 32} {0, 12, 17, 27} {7, 10, 11, 28} {3, 8, 20, 31} {10, 13, 19, 28}
{15, 16, 21, 31} {14, 19, 23, 32} {3, 7, 8, 27} {13, 19, 23, 30} {3, 12, 13, 21}
{0, 8, 20, 26} {0, 10, 19, 33} {16, 17, 20, 24} {0, 1, 20, 25} {1, 2, 19, 28}
{2, 7, 12, 28} {1, 2, 11, 17} {1, 13, 20, 29} {0, 14, 24, 29} {0, 2, 6, 12}
{0, 17, 21, 23}.


�
Lemma 6.10 There exists a 4-HF2(35 : 2).

Proof We construct the 4-HF2(35 : 2) on X = Z30 ∪ {∞0,∞1,∞2,∞3} with group set
G = {Gi = {i, i + 15} : 0 ≤ i ≤ 14} ∪ {G∞i = {∞i ,∞i+2} : 0 ≤ i ≤ 1} and
hole set F = {Fi : 0 ≤ i ≤ 5} with the common hole F0 = {G∞i : 0 ≤ i ≤ 1} and
Fi = {Gi−1, Gi+4, Gi+9} ∪ F0 for 1 ≤ i ≤ 5. We list the base blocks below which are
developed under the group Z30.

{0, 1, 8,∞0} {0, 2, 13,∞0} {0, 3, 9,∞0} {0, 4, 16,∞0} {0, 4, 6, 20}
{0, 1, 13,∞1} {0, 2, 6,∞1} {0, 3, 11,∞1} {0, 7, 16,∞1} {0, 1, 2, 22}
{0, 1, 3,∞2} {0, 4, 13,∞2} {0, 6, 14,∞2} {0, 7, 18,∞2} {0, 14, 20, 26}
{0, 1, 9,∞3} {0, 2, 14,∞3} {0, 3, 7,∞3} {0, 6, 17,∞3} {0, 3, 13, 20}
{0, 18, 20, 27} {0, 10, 26, 29} {0, 3, 17, 25} {0, 8, 19, 28} {0, 8, 18, 26}
{0, 19, 26, 27} {0, 13, 22, 26} {0, 13, 21, 27} {0, 12, 14, 23} {0, 2, 3, 19}
{0, 1, 12, 18} {0, 2, 24, 27} {0, 5, 21, 26} {0, 5, 19, 24} {0, 13, 18, 25}
{0, 2, 4, 7} {0, 2, 8, 25} {0, 18, 21, 28} {0, 9, 20, 21} {0, 4, 10, 11}
{0, 1, 7, 14} {0, 24, 25, 29}.


�
Lemma 6.11 There exists a GDD(3, 4, 2n +8) of type 2n81 for all n ≡ 0, 1 ( mod 6), n ≥ 6
and n �= 12.

Proof For n = 6, 7, 13, the required designs exist by Lemmas 6.8 and 6.9. For each given
n = 6m + s, s ∈ {0, 1}, m ≥ 3, there exists a {4, 6}-CS(2(n−s)/6 : 2). Apply Lemma 2.4
with a 4-HF2(3k−1 : s + 1) and a GDD(3, 4, 6k) of type 6k with k ∈ {4, 6} to obtain a 4-
HF2(6(n−s)/6 : s + 4). Then applying Lemma 6.3 with a GDD(3, 4, 2s + 20) of type 26+s81,
we get a GDD(3, 4, 2n + 8) of type 2n81. Here, the input designs are from Theorem 3.1,
Lemmas 6.5, 6.8 and 6.10. 
�
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Theorem 6.3 There exists a 4-HF2((3n + s)3 : s) for all n ≥ 0 and s ≥ 1.

Proof In [10, Theorem 3.4], Hartman constructed a CQS((6n + 2s)3 : 2s) for each integer
n ≥ 0 and s ≥ 1 on X = {ai : a ∈ Z6n+2s, i ∈ Z3}∪ {∞1,∞2, . . . ,∞2s} with three groups
{{ai : a ∈ Z6n+2s} : i ∈ Z3} and a stem {∞1,∞2, . . . ,∞2s}. Let the block set be B, in
which there is a set of blocks

φ = {{ai , bi , ci+1, di+1} : {a, b} ∈ F (k)
i , {c, d} ∈ F (k)

i+1,

1 ≤ k ≤ 4n + 2s − 1, i ∈ Z3},
where F (1)

i |F (2)
i | . . . |F (4n+2s−1)

i is a one-factorization of the graph on Z6n+2s × {i} defined
by the simple pairing P(n, 2s) constructed in [10, Theorem 3.3]. Clearly, 4n + 2s − 1 ≥ 1.

The desired 4-HF2((3n + s)3 : s) will be on X with the group set G = {{ai , bi } : {a, b} ∈
F (1)

i , i ∈ Z3} ∪ {{∞i ,∞i+s} : 1 ≤ i ≤ s}, three holes Fi+1 = {{ai , bi } : {a, b} ∈
F (1)

i } ∪ F0, i ∈ Z3 intersecting on a common hole F0 = {{∞i ,∞i+s} : 1 ≤ i ≤ s}.
Let

φ1 = {{ai , bi , ci+1, di+1} : {a, b} ∈ F (1)
i , {c, d} ∈ F (1)

i+1, i ∈ Z3}.
Note that φ1 ⊂ φ and each block in φ1 intersects two groups in G which are from two distinct
holes. It is readily checked that B \ φ1 is the block set of the desired 4-HF2((3n + s)3 : s). 
�
Lemma 6.12 There exists a GDD(3, 4, 2n + 8) of type 2n81 for all n ≡ 3, 16 (mod 18),
n ≥ 16 and n �= 34.

Proof For each given n = 18k + 3 with k ≥ 1, there is a 4-HF2((3(2k − 1) + 4)3 : 4) by
Theorem 6.3. By applying Lemma 6.3 with a GDD(3, 4, 12k + 10) of type 26k+181 from
Lemma 6.11, we get a GDD(3, 4, 2n + 8) of type 2n81.

For each given n = 18k + 16 with k ≥ 0 and k �= 1, there is a 4-HF2((6k + 5)3 : 5) by
Theorem 6.3. Then applying Lemma 6.3 with a GDD(3, 4, 12k + 20) of type 26k+681 from
Lemma 6.11, we get a GDD(3, 4, 2n + 8) of type 2n81. 
�

Combining Lemmas 6.11 and 6.12, we obtain

Theorem 6.4 There exists a GDD(3, 4, 2n +8) of type 2n81 for all n ≡ 0, 1, 3, 6, 7, 12, 13,

16 (mod 18), n ≥ 6 except possibly for n = 12, 34.

7 Conclusion

In this article, we determine the minimum size of a constant weight covering code (n, 4, 3, 1)

over Zq for all n ≥ 4, q = 3, 4 or q = 2m+1 with m ≥ 2, leaving the only case (q, n) = (3, 5)

in doubt. The problem was solved by establishing an equivalent existence result for group
divisible coverings of triples by quadruples using different types of H-frames, which play
a crucial role in the recursive constructions of group divisible 3-designs similar to that of
candelabra systems in the constructions of 3-wise balanced designs. This approach has also
been proved to be quite effective to deal with the existence problems for nonuniform group
divisible 3-designs with block size four and types 2nu1 with u = 6, 8. We believe that the
theory of candelabra systems and H-frames will be proved useful for solving the general
existence problem on nonuniform group divisible 3-designs with block size four and type
gnu1.
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